Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.24.21252338

ABSTRACT

Background Multiple COVID-19 vaccines appear to be safe and efficacious, but only high-income countries have the resources to procure sufficient vaccine doses for most of their eligible populations. The World Health Organization has published guidelines for vaccine prioritisation, but most vaccine impact projections have focused on high-income countries, and few incorporate economic considerations. To address this evidence gap, we projected the health and economic impact of different vaccination scenarios in Sindh province, Pakistan (population: 48 million). Methods We fitted a compartmental transmission model to COVID-19 cases and deaths in Sindh from 30 April to 15 September 2020 using varying assumptions about the timing of the first case and the duration of infection-induced immunity. We then projected cases and deaths over 10 years under different vaccine scenarios. Finally, we combined these projections with a detailed economic model to estimate incremental costs (from healthcare and partial societal perspectives), disability adjusted life years (DALYs), and cost-effectiveness for each scenario. Findings A one-year vaccination campaign using an infection-blocking vaccine at $3/dose with 70% efficacy and 2.5 year duration of protection is projected to avert around 0.93 (95% Credible Interval: 0.91, 1.0) million cases, 7.3 (95% CrI: 7.2, 7.4) thousand deaths and 85.1 (95% CrI: 84.6, 86.8) thousand DALYs, and be net cost saving from the health system perspective. However, paying a high price for vaccination ($10/dose) may not be cost-effective. Vaccinating the older (65+) population first would prevent slightly more deaths and a similar number of cases as vaccinating everyone aged 15+ at the same time, at similar cost-effectiveness. Interpretation COVID-19 vaccination can have a considerable health impact, and is likely to be cost-effective if more optimistic vaccine scenarios apply. Preventing severe disease is an important contributor to this impact, but the advantage of focusing initially on older, high-risk populations may be smaller in generally younger populations where many people have already been infected, typical of many low- and -middle income countries, as long as vaccination gives good protection against infection as well as disease.


Subject(s)
COVID-19 , Death
2.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3783099

ABSTRACT

Background: Policy makers need to be rapidly informed about the potential equity consequences of different COVID-19 strategies, alongside their broader health and economic impacts. While there are complex models to inform both potential health and macro-economic impact, there are few tools available to rapidly assess potential equity impacts of interventions.Methods: We created an economic model to simulate the impact of lockdown measures in Pakistan, Georgia, Chile, United Kingdom, Philippines, and South Africa. We consider impact of lockdown in terms of inability to socially distance, and income loss during lockdown, and tested the impact of assumptions on social protection coverage in a scenario analysis.Findings: In all examined countries, lower socioeconomic quintiles were likely to experience disproportionately more income loss and greater inability to socially distance during lockdown. Improving social protection increased the percentage of the workforce able to socially distance from 40% (30% Chile - 55% UK) to 60% (57% Chile - 67% UK). We estimate the cost of this social protection would be equivalent to an average of 0.5% GDP.Interpretation: We illustrate the potential for using publicly available data to rapidly assess the equity implications of social protection and non-pharmaceutical intervention policy. We highlight potential for social protection to mitigate inequitable health and economic impacts of lockdown. Although social protection is usually targeted to the poorest, middle quintiles will likely also need support as they suffer the worst income losses and are disproportionately more exposed.Funding: This work was supported by the UK Foreign, Commonwealth and Development Office and Wellcome [grant number 221303/Z/20/Z].Declaration of Interests: We declare no competing interests.


Subject(s)
COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.23.20180299

ABSTRACT

Much attention has focussed in recent months on the impact that COVID-19 has on health sector capacity, including critical care bed capacity and resources such as personal protective equipment. However, much less attention has focussed on the overall cost to health sectors, including the full human resource costs and the health system costs to address the pandemic. Here we present estimates of the total costs of COVID-19 response in low- and middle-income countries for different scenarios of COVID-19 mitigation over a one year period. We find costs vary substantially by setting, but in some settings even mitigation scenarios place a substantial fiscal impact on the health system. We conclude that the choices facing many low- and middle- income countries, without further rapid emergency financial support, are stark, between fully funding an effective COVID-19 reponse or other core essential health services.


Subject(s)
COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.06.20092734

ABSTRACT

Background. Coronavirus disease 2019 (COVID-19) epidemics strain health systems and households. Health systems in Africa and South Asia may be particularly at risk due to potential high prevalence of risk factors for severe disease, large household sizes and limited healthcare capacity. Methods. We investigated the impact of an unmitigated COVID-19 epidemic on health system resources and costs, and household costs, in Karachi, Delhi, Nairobi, Addis Ababa and Johannesburg. We adapted a dynamic model of SARS-CoV-2 transmission and disease to capture country-specific demography and contact patterns. The epidemiological model was then integrated into an economic framework that captured city-specific health systems and household resource use. Findings. The cities severely lack intensive care beds, healthcare workers and financial resources to meet demand during an unmitigated COVID-19 epidemic. A highly mitigated COVID-19 epidemic, under optimistic assumptions, may avoid overwhelming hospital bed capacity in some cities, but not critical care capacity. Interpretation. Viable mitigation strategies encompassing a mix of responses need to be established to expand healthcare capacity, reduce peak demand for healthcare resources, minimise progression to critical care and shield those at greatest risk of severe disease.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL